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THE IMPORTANCE OF MC IN RT

Monte Carlo (MC) simulations offer many 

advantages over conventional algorithms for dose 

calculat ion: 

• In brachytherapy, dose deposition depends 

strongly on Z due to the dominance of 

photoelectric effect at low photon energies. 

• In particle therapy, accurate beam range 

calculation is critical for optimal planning and 

patient safety.
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PATIENT GEOMETRY TO MC INPUTS

• One of the key steps in the preparation of a MC simulation is the 

creation of the patient geometry, including the assignment of 

material composit ion in each voxel. 

• Complete elemental composit ion and mass density is necessary to 

calculate the exact cross sect ions for all interactions considered. 

• Great at tent ion must be paid to this step as it influences all results 

generated by the simulation: « Rubbish in, Rubbish out ».
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THE SCHNEIDER METHOD

To extract MC inputs from single energy CT (SECT) data, the gold 

standard is the method of Schneider et al. (2000). The CT is calibrated to 

construct a segmented look-up table (LUT) that links every possible HU 

to a certain set of MC inputs. 
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DUAL AND MULTI-ENERGY CT

• With dual- or mult i-energy CT, 

empirical LUT are obsolete, as 

more information can be extracted 

directly from MECT data
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DUAL AND MULTI-ENERGY CT

• With dual- or mult i-energy CT, 

empirical LUT are obsolete, as 

more information can be extracted 

directly from MECT data 

• Still not enough information to 

derive directly MC inputs 

• How can we use opt imally the 

added informat ion to improve 

the quality of MC inputs?
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CT DATA TO MONTE CARLO INPUTS

• We want to extract full atomic composit ion and mass density, but we have 

only limited information (# of energies) per voxel.  

• Tissue characterization for Monte Carlo dose calculat ion from CT data is an 

underdetermined problem 

• We propose to use principal component  analysis (PCA) on reference dataset 

to extract a new basis of variables that can describe human tissues 

composition more efficient ly by reducing the dimensionality of the problem. 

• We call these variables Eigent issues (ET)
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EIGENTISSUE REPRESENTATION OF HUMAN BODY

• All informat ion relevant for dose calculat ion can be stocked in a 

vector of partial electron densities: 

• The ET representation consists of a linear t ransformat ion of x:

x = ⇢e [λ1 λ2 ... λM ]

= [x1 x2 ... xM ]

x = y1 ·ET1 + y2 ·ET2 + ... + yM ·ETM

Density of electrons Fraction of electrons of element M in the tissue

Vector of the partial densities in the M th eigentissue
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APPLYING PCA TO HUMAN TISSUES

• Human tissues are composed of a limited number  of elements. 

Including trace elements, only 13 different chemical components are 

reported in the literature. 

• Also, the weight fraction of these elements is often strongly 

correlated (ex: P & Ca) or ant icorrelated (ex: C & O). 

• The eigentissues allow to characterize human t issues with less than 13 

variables without  losing much accuracy.
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ADAPTATION TO CT DATA

• Using a suitable stoichiometric calibrat ion, the photon at tenuat ion of 

each ET can be estimated for any spect rum or imaging protocol.
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ADAPTATION TO CT DATA

• Once their attenuation coefficient is estimated, the ETs are treated as 

virtual materials.  

• If K information is available (i.e. K energies),  decomposit ion is 

performed to extract the fract ion of the K more meaningful ETs in 

each voxel.
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APPLICATION TO DECT: BENCHMARKING WITH OTHER 

METHODS

• Comparison with two recently published 

methods for the characterization of 43 

reference soft tissues using DECT: 

• Water-Lipid-Protein (WLP) 

decomposition (Malusek et al. 2013) 

• Parameterizat ion (Hünemohr et al. 2014)  

• Simulated HU for 80 kVp and 140/Sn kVp 

spectra of the SOMATOM Definition Flash 
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POTENTIAL EXTENSION TO MECT

• Separating a 140 kVp 

spectrum in five 

energy bins, the 

method shows 

improvement  in 

extracting elemental 

weights with more 

than two informat ion. 
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VALIDATION OF ETD ON PATIENT GEOMETRY

• A virtual pat ient  generated from real anatomical 

data is used as ground truth for MC dose calculation 

• A reference t issue with known composit ion is 

assign to each voxel, while the density is allowed to 

vary. 

• SECT and DECT images are simulated using 

Matlab 

• Dose calculation is performed using the EGSnrc 

user-code BrachyDose for Brachytherapy and 

TOPAS for proton therapy
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ETD FOR BRACHYTHERAPY: RESULTS
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ETD FOR PROTON THERAPY: RESULTS

   Range error up to 1.5 mm using SECT
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CONCLUSION

• Eigent issues representation of human body composit ion minimizes the number of parameters needed for accurate 

characterizat ion 

• Adapting this representation to material decomposit ion of CT data allows extracting high quality Monte Carlo 

inputs from only few measurements 

• The method is accurate and versat ile: 

• Not limited to only two parameters (EAN and ED) 

• Valid through the whole range of X-ray energies (e.g. kV and MV) 

• More accurate dose calculation for both low-kV photons and protons than the gold-standard SECT approach 

• Associated Publicat ions:  

• A. Lalonde and H. Bouchard (2016),  A general method to derive tissue parameters for Monte Carlo dose 

calculation with dual- and multi-energy CT, Phys. Med. Biol.  

• A. Lalonde, E. Bär and H. Bouchard (2017).  A Bayesian approach to solve proton stopping powers from noisy 

multi-energy CT data, Med. Phys.
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