

ACCURATE EXTRACTION OF TISSUE PARAMETERS FOR MONTE CARLO SIMULATIONS USING MULTI-ENERGY CT

Arthur Lalonde and Hugo Bouchard Département de physique, Université de Montréal

THE IMPORTANCE OF MC IN RT

Monte Carlo **(MC)** simulations offer many advantages over conventional algorithms for dose calculation: THE IMPORTANCE OF

lonte Carlo (MC) simulations offer many

dvantages over conventional algorithms for dose

alculation:

• In **brachytherapy**, dose deposition depends

strongly on Z due to the dominance of
 photoelectric

- strongly on **Z** due to the dominance of **photoelectric** effect at low photon energies.
- In **particle therapy**, accurate beam **range calculation** is critical for optimal planning and patient safety.

PATIENT GEOMETRY TO MC INPUTS

- One of the key steps in the preparation of a MC simulation is the creation of the patient geometry, including the assignment of material composition in each voxel.
	- Complete elemental composit ion and mass density is necessary to calculate the exact cross sections for all interactions considered.

• Great attention must be paid to this step as it influences all results generated by the simulation: *« Rubbish in, Rubbish out ».*

THE SCHNEIDER METHOD

THE SCHNEIDER METHOD
To extract MC inputs from single energy CT (SECT) data, the gold
standard is the method of Schneider et al. (2000). The CT is calibrate
construct a segmented look-up table (LUT) that links every possib standard is the method of Schneider et al. (2000). The CT is calibrated to THE SCHNEIDER METHOD
To extract MC inputs from single energy CT (SECT) data, the gold
standard is the method of Schneider et al. (2000). The CT is calibrated to
construct a segmented look-up table (LUT) that links every po to a certain set of MC inputs. Composition , **Composition 22** Composition **23 Composition ³ Composition ⁴ …**

THE SCHNEIDER METHOD

THE SCHNEIDER METHOD
To extract MC inputs from single energy CT (SECT) data, the gold
standard is the method of Schneider et al. (2000). The CT is calibrate
construct a segmented look-up table (LUT) that links every possib standard is the method of Schneider et al. (2000). The CT is calibrated to THE SCHNEIDER METHOD

To extract MC inputs from single energy CT (SECT) data, the gold

standard is the method of Schneider et al. (2000). The CT is calibrated to

construct a segmented look-up table (LUT) that links every to a certain set of MC inputs. Composition , Co_{mposition 23} **Composition ² Composition ³ Composition ⁴ …**

 $/$ 1.1 1.
112. li

Université de Montréal

Connectivetissue

DUAL AND MULTI-ENERGY CT

• With dual- or multi-energy CT, empirical LUT are obsolete, as more information can be extracted directly from MECT data

DUAL AND MULTI-ENERGY CT

- With dual- or multi-energy CT, empirical LUT are obsolete, as more information can be extracted directly from MECT data
	- Still not enough information to derive directly MC inputs
- How can we use optimally the \bullet added information to improve the quality of MC inputs?

CT DATA TO MONTE CARLO INPUTS T DATA TO MONTE CARLO INPUTS
We want to extract full atomic composition and mass density, but we have
only limited information (# of energies) per voxel.
Tissue characterization for Monte Carlo dose calculation from CT dat

- We want to extract full atomic composit ion and mass density, but we have only limited information (# of energies) per voxel.
	- Tissue characterization for Monte Carlo dose calculation from CT data is an underdetermined problem

CT DATA TO MONTE CARLO INPUTS

- We want to extract full atomic composit ion and mass density, but we have only limited information (# of energies) per voxel.
	- Tissue characterization for Monte Carlo dose calculation from CT data is an underdetermined problem
- We propose to use principal component analysis (PCA) on reference dataset to extract a new basis of variables that can describe human tissues composition more e fficiently b y reducing the dimensionality of the problem.
	- We call these variables Eigentissues (ET)

EIGENTISSUE REPRESENTATION OF HUMAN BODY

EIGENTISSUE REPRESENTATION OF HUMAN BO

• All information relevant for dose calculation can be stocked in a

vector of partial electron densities:
 $X = \left[\lambda_1 \lambda_2 ... \lambda_M\right]$ vector of partial electron densities:

UE REPRESENTATION OF HUMAN BODY

\nOn relevant for dose calculation can be stored in a trial electron densities:

\nDensity of electrons

\n
$$
\mathbf{X} = \begin{bmatrix} \n\mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_M \n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_M \n\end{bmatrix}
$$
\nsentation consists of a linear transformation of x:

\n
$$
\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \n\cdot & \cdot & \cdot & \cdot & \cdot
$$

• The ET representation consists of a linear transformation of x:

$$
x = y_1 \cdot ET_1 + y_2 \cdot ET_2 + ... + y_M \cdot ET_M
$$

Vector of the partial densities in the *M th* eigentissue

I Iniversi

de Montréa

THE GENERAL IDEA OF PCA

Original image

PC₁

PC1+PC2

PC1+PC2+PC3

THE GENERAL IDEA OF PCA

THE GENERAL IDEA OF PCA

• For human tissues, the colours are the elements, and the principal components are the eigentissues.

APPLYING PCA TO HUMAN TISSUES

- Human tissues are composed of a limited number of elements. **PPLYING PCA TO HUMAN TISSUES**
Including trace elements, only 13 different chemical components are
reported in the literature.
Also, the weight fraction of these elements is often strongly
correlated (ex: P & Ca) or antico reported in the literature.
- Also, the weight fraction of these elements is often strongly correlated (ex: P & Ca) or anticorrelated (ex: C & O).
- The eigentissues allow to characterize human tissues with less than 13 variables without losing much accuracy.

• Using a suitable stoichiometric calibration, the photon attenuation of

- Once their attenuation coefficient is estimated, the ETs are treated as virtual materials.
- ADAPTATION TO CT DATA
their attenuation coefficient is estimated, the ETs are treated
al materials.
formation is available (i.e. Kenergies), decomposition is
rmed to extract the fraction of the Kmore meaningful ETs in
voxe • If *K* information is available (i.e. *K* energies), decomposition is performed to extract the fraction of the *K* more meaningful ETs in each voxel.

ADAPTATION TO CT DATA

\nOnce their attenuation coefficient is estimated, the ETs are treated as virtual materials.

\nIf Kinformation is available (i.e. Kenergies), decomposition is performed to extract the fraction of the Kmore meaningful ETs in each voxel.

\n
$$
\begin{array}{ccc}\n\hat{y}_1 & \hat{y}_2 \\
\hat{z}_2 & \hat{K} \text{ as } \hat{z}_2 \\
\hat{w}_3 & \hat{K} \text{ as } \hat{z}_3 \\
\hat{w}_4 & \hat{w}_5\n\end{array}
$$
\n
$$
\hat{\mu}(E_1, ET_1) \cdots \hat{\mu}(E_K, ET_1) \begin{array}{ccc}\n\hat{w}_1 & \hat{w}_2 \\
\hat{w}_2 & \hat{w}_3\n\end{array}
$$
\n
$$
\hat{\mu}(E_1, ET_K) \cdots \hat{\mu}(E_K, ET_K) \begin{array}{ccc}\n\hat{w}_1 & \hat{w}_2 \\
\hat{w}_3 & \hat{w}_3\n\end{array}
$$
\n

APPLICATION TO DECT: BENCHMARKING WITH OTHER
METHODS

- Comparison with two recently published methods for the characterization of 43 reference soft tissues using DECT:
	- Water-Lipid-Protein (WLP) decomposition (Malusek *et al.* 2013)
	- Parameterization (Hünemohr *et al.* 2014) $\frac{\omega}{\alpha}$
- Simulated HU for 80 kVp and 140/Sn kVp spectra of the SOMATOM Definition Flash DSCT

POTENTIAL EXTENSION TO MECT

• Separating a 140 kVp spectrum in five energy bins, the method shows improvement in extracting elemental weights with more than two information.

CHUM

de Montréal

VALIDATION OF ETD ON PATIENT GEOMETRY

-
- ALIDATION OF ETD ON PATI
• A virtual patient generated from real anatomical
• A reference tissue with known composition is
• A reference tissue with known composition is
• assign to each voxel, while the density is allowed **ALIDATION OF ETD ON PATIEN**
A virtual patient generated from real anatomical
data is used as ground truth for MC dose calculation
A reference tissue with known composition is
assign to each voxel, while the density is all **ALIDATION OF ETD ON PATI**

• A virtual patient generated from real anatomical

data is used as ground truth for MC dose calculati

• A reference tissue with known composition is

• assign to each voxel, while the density assign to each voxel, while the density is allowed to vary.
	- SECT and DECT images are simulated using Matlab
	- Dose calculation is performed using the EGSnrc user-code BrachyDose for Brachytherapy and LIDATION OF ET

	wirtual patient generated fr

	ata is used as ground truth for

	A reference tissue with know

	assign to each voxel, while tl

	vary.

	SECT and DECT images are

	Matlab

	Dose calculation is performe

	user-code

Calcifications Femur spherical head Femur conical trochanter Red marrow Small intestinewall

ETD FOR BRACHYTHERAPY: RESULTS Schneider

Schneider

Schneider

Section 1994

No noise No noise

SRACHYTHERAPY 0 % 30%
 20%
 10%
 0.0%
 -10%
 -10% SECT - Schneider DECT - ETD 30 % \sim 3 -20% 10% 0% -10% -20 % -20 % -30%

Relative error on dose

Université **d'a** de Montréal

CHUM

See Poster #144 - Remy *et al.*

ETD FOR PROTON THERAPY: RESULTS

ETD FOR PROTON THERAPY: RESULTS

Range error up to 1.5 mm using SECT

CONCLUSION

- Eigentissues representation of human body composition minimizes the number of parameters needed for accurate characterization
- Adapting this representation to material decomposition of CT data allows extracting high quality Monte Carlo inputs from only few measurements Eigentissues representation of human body composition minimizes the number of parameters needed for accurat
Adapting this representation to material decomposition of CT data allows extracting high quality Monte Carlo
The m
- The method is accurate and versatile:
	- Not limited to only two parameters (EAN and ED)
	- Valid through the whole range of X-ray energies (e.g. kV and MV)
	-
- Associated Publications:

- A. Lalonde and H. Bouchard (2016), *A general method to derive tissue parameters for Monte Carlo dose calculation with dual- and multi-energy CT*, Phys. Med. Biol.
- A. Lalonde, E. Bär and H. Bouchard (2017). *A Bayesian approach to solve proton stopping powers from noisy multi-energy CT data,* Med. Phys.

THANK YOU FOR YOUR ATTENTION

Université **m** de Montréal

de l'Université de Montréal

Santé

et Services sociaux

Acknowledgements:

- Charlotte Remy
- Esther Bär
- Jean-François Carrier
- Dominic Béliveau- Nadeau
- Mikaël Simard